

| Reg. No | ο.  |      |  |  |  | w |  |  | m 1 |  |  |  |  | * |      |  |  |
|---------|-----|------|--|--|--|---|--|--|-----|--|--|--|--|---|------|--|--|
| Name:   | *** | <br> |  |  |  |   |  |  |     |  |  |  |  |   | te s |  |  |

## Fourth Semester B.Tech. Degree Examination, May 2015 (2013 Scheme) 13.404 : DATA COMMUNICATION (FR)

Time: 3 Hours

Max. Marks: 100

## PART-A

 $(5\times4=20 \text{ Marks})$ 

- Draw the block diagram of a communication model and describe the functions of each component of a communication model.
- 2. Compare and contrast guided and unguided transmission media
- 3. Draw the constellation diagram for the following:
  - i) ASK, amplitudes of 1 and 3
  - ii) 2-PSK, amplitude of 1 at 0° and 180°.
- Data stream consisting of 101001101 is to be transmitted. Generate a hamming code for it. Induce a single bit error at any bit position of the received code and detect it using hamming algorithm.
- 5. State the need for switching and list the three traditional switching methods.

grexelqilium is sayl lariW y Julian PART-B

(4×20=80 Marks)

- 6. A) Define and discuss in detail, using an example to illustrate each of the following transmission modes:
  - i) Simplex
  - ii) Half-Duplex
  - iii) Full-Duplex.

10

B) With a neat sketch, explain the physical description, applications and transmission characteristics of the optical fiber.

10

OF

| 7.  |           | State the Nyquist and Shannon theorems and their uses with appropriate examples.                                                                                                                                                                                      |    |  |  |  |  |  |  |  |  |  |  |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|--|
|     | B)        | i) Consider a noiseless channel with the bandwidth of 3000 Hz transmitting a signal with two signal levels. Find the maximum bit rate.                                                                                                                                | 3  |  |  |  |  |  |  |  |  |  |  |
|     | i         | ii) A signal to noise ratio is given in decibels. Assume that $SNR_{dB} = 36$ and the channel bandwidth is 2 MHz. Find the theoretical capacity.                                                                                                                      | 3  |  |  |  |  |  |  |  |  |  |  |
|     | ii        | ii) Consider a channel with 1 MHz bandwidth. The SNR for this channel is 63. Find bit rate and signal level for that channel.                                                                                                                                         | 4  |  |  |  |  |  |  |  |  |  |  |
| 8.  | (         | Explain in detail and compare the following modes of data transmission on a communication link. Use diagrams.  i) Parallel transmission  ii) Serial transmission.                                                                                                     | 14 |  |  |  |  |  |  |  |  |  |  |
|     |           | A = BAB                                                                                                                                                                                                                                                               | 14 |  |  |  |  |  |  |  |  |  |  |
|     |           | Using the Nyquist theorem, calculate the sampling rate for the following analog signals:                                                                                                                                                                              |    |  |  |  |  |  |  |  |  |  |  |
|     |           | A low-pass analog signal with bandwidth 2000 Hz                                                                                                                                                                                                                       |    |  |  |  |  |  |  |  |  |  |  |
|     | 311 314   | <ul> <li>A band-pass analog signal with frequencies from 2000 to 6000 Hz.</li> <li>OR</li> </ul>                                                                                                                                                                      | 6  |  |  |  |  |  |  |  |  |  |  |
| 9.  |           | e a detailed account on PCM and DM. Also, list the advantages and advantages of PCM and DM.                                                                                                                                                                           | 20 |  |  |  |  |  |  |  |  |  |  |
| 10. | pm<br>Ind | Four 1-kbps connections are multiplexed together using synchronous TDM. A unit is 1 bit. Find the following:  i) The duration of 1 bit before multiplexing  ii) The transmission rate of the link  iii) The duration of a time slot, and  v) The duration of a frame. | 8  |  |  |  |  |  |  |  |  |  |  |
|     | B)        | i) A cable TV system has a number of commercial channels, all of them showing programs and advertisement alternatively. What type of multiplexing is it? Justify your answer.                                                                                         | 6  |  |  |  |  |  |  |  |  |  |  |
|     | DAT       | ii) Two channels, one with a bit rate of 100 kbps and another with a bit rate of 200 kbps, are to be multiplexed. What is the frame rate? What is the                                                                                                                 |    |  |  |  |  |  |  |  |  |  |  |
|     |           | frame duration? What is the bit rate of the link?                                                                                                                                                                                                                     | 6  |  |  |  |  |  |  |  |  |  |  |
|     |           | OR                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |  |  |
| 11. |           | plain the various redundancy checks used for error detection in data nmunication with example.                                                                                                                                                                        | 20 |  |  |  |  |  |  |  |  |  |  |
| 12. |           | w the GSM functional system architecture and name its elements and also cribe its functions.                                                                                                                                                                          | 20 |  |  |  |  |  |  |  |  |  |  |
|     |           | OR .160s leading and in solitare to the order series as                                                                                                                                                                                                               |    |  |  |  |  |  |  |  |  |  |  |
| 13. |           | ine Spread spectrum. Differentiate between FHSS and DSSS. Explain FHSS                                                                                                                                                                                                | 20 |  |  |  |  |  |  |  |  |  |  |